|
Number of homes to visit...
There are approximately two billion children (persons under 18) in the
world. However, since Santa does not visit children of Muslim, Hindu, Jewish
or Buddhist religions, this reduces the workload for Christmas night to 15%
of the total, or 378 million. At an average rate of 3.5 children per house
hold, that comes to 108 million homes, presuming that there is at least one
good child in each.
The time it takes...
Santa has about 31 hours of Christmas to work with, thanks to the
different time zones and the rotation of the earth, assuming he travels east
to west (which is logical). This works out to 967.7 visits per second. This
is to say that for each Christian household with a good child, Santa has
around 1/1000th of a second to park the sleigh, hop out, jump down the
chimney, fill the stockings, distribute the remaining presents under the
tree, eat whatever snacks have been left for him, get back up the chimney,
jump into the sleigh and get on to the next house.
Travelling speed...
Assuming that each of these
108 million stops is evenly distributed around the earth (which, of course,
we know to be false, but will accept for the purposes of our calculations),
we are now talking about 0.78 miles per household; a total trip of 75.5
million miles, not counting bathroom stops or breaks. This means Santa's
sleigh is moving at 650 miles per second - 3,000 times the speed of sound.
For purposes of comparison, the fastest man-made vehicle, the Ulysses space
probe, moves at a poky 27.4 miles per second, and a conventional reindeer
can run (according to my copy of Encarta) at 15 miles per hour.
And all the weight...
The payload of the sleigh adds another interesting element. Assuming that
each child gets nothing more than a medium sized Lego set (two pounds), the
sleigh is carrying over 500 thousand tons, not counting Santa himself. On
land, a conventional reindeer can pull no more than 300 pounds. Even
granting that the "flying" reindeer could pull ten times the normal amount,
the job can't be done with eight or even nine of them.
Santa would need 360,000 of them. This increases the payload, not
counting the weight of the sleigh, another 54,000 tons, or roughly seven
times the weight of the QE2 (the ship, not the monarch).
With all this Energy...
600,000 tons traveling at 650 miles per second creates enormous air
resistance - this would heat up the reindeer in the same fashion as a
spacecraft re-entering the earth's atmosphere. The lead pair of reindeer
would absorb 14.3 quintillion joules of energy per second each. In short,
they would burst into flames almost instantaneously, exposing the reindeer
behind them and creating deafening sonic booms in their wake.
The fate of Santa...
The entire reindeer team would be vaporized within 4.26 thousandths of a second, or
right about the time Santa reached the fifth house on his trip. Not that it
matters, however, since Santa as a result of accelerating from a dead stop
to 650 m.p.s. in .001 seconds would be subjected to centrifugal forces of
17,500 g's. A 250 pound Santa (which seems ludicrously slim) would be pinned
to the back of the sleigh by 4,315,015 pounds of force, instantly crushing
his bones and organs and reducing him to a quivering blob of pink strawberry
jam.
Therefore, if Santa did exist, he's dead now !
|
|